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J. Phys. A: Math. Gen. 19 (1986) 2201-2213. Printed in Great Britain 

Kinetic theory of light-induced drift of particles with 
degenerate energy levels 

F Kh Gel’mukhanov, L V Il’ichov and A M Shalagin 
Institute of Automation and Electrometry, Novosibirsk, 630090, USSR 

Received 8 May 1985, in final form 3 October 1985 

Abstract. The theory of light-induced drift of particles with degenerate levels is proposed. 
Kinetic equations which are semiclassical with respect to rotational degrees of freedom 
and with a phase memory accounting are obtained. The drift velocity dependence on 
radiation polarisation is predicted. Numerical calculation, which has been made in a strong 
collision model, shows that the accounting of level degeneracy leads to a velocity change 
of up to 10-20% under some conditions. 

1. Introduction 

In 1979 a new kinetic gas phenomenon in a laser radiation field, light-induced drift 
(LID), was predicted theoretically by Gel’mukhanov and Shalagin (1979, 1980a). 
Numerous theoretical works (Gel’mukhanov and Shalagin 1980a, b, Mironenko and 
Shalagin 1981, Dykhne and Starostin 1980, Gel’mukhanov and Telegin 1981, Popov 
et a1 1981, 1982, Gel’mukhanov 1982, Gel’mukhanov and Il’ichov 1984) and experi- 
mental works (Antsigin et a1 1979, Atutov et a1 1982, Folin and Chapovsky 1983, 
Krasnoperov et a1 1984, Riegler et a1 1983, Panfilov et a1 1981, 1983, Werij et a1 1984) 
which have been made during recent years allow us to speak about the appearance of 
a new direction in the physics of radiated media, and more specifically about the 
kinetic gas in a laser radiation field. 

Let us recall the physics of the LID phenomenon. We consider the interaction of 
a plane-running monochromatic light wave with an ensemble of absorptive particles 
in a mixture with a buffer gas. Radiation is absorbed at a transition n-m from the 
ground state n. The absorptive line is broadened by the Doppler effect. Under these 
conditions, only those particles whose velocity projection on the wavevector k is close 
to the ‘resonant’ one, i.e. which corresponds to the condition ko = Cl = w - w,,,, interact 
with the radiation ( w  is the radiation frequency, w,,, is the frequency of the transition 
n - m ) .  If a# 0 the excited particles appear with a non-zero velocity projection on the 
wavevector, i.e. there is a flow of the excited particles j m  which is collinear to k. In 
the ground state the opposite flow j,, occurs due to the decrease of unexcited particles 
in the interval of resonant velocities. 

Until collisions have manifested themselves the radiation initiates the flows j ,  and 
j,, with equal intensities and opposite directions (if the light pressure phenomenon, 
which can usually be neglected in the LID theory, is not taken into account). In the 
presence of a buffer gas each flow j i  is impeded, and the friction force density E. is 
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equal to 

where ma is the mass of an absorptive particle, vi is the transport collisional frequency, 
i = m, n. In general the interaction laws for excited and unexcited particles are different, 
so the transport frequencies are different as well (U,,, # U,,). As a consequence of this 
a total non-zero force density F =  F,,,+F, arises, which affects the gas and sets it in 
motion. This is the physical basis of the L I D  phenomenon. 

The drift direction depends on the sign of the difference U,,, - v, and changes with 
the change of sign of the detuning R. For example, if U, > U,, and R > 0, the particles 
drift against the wavevector k. The momentum conservation law causes the buffer gas 
to move in the opposite direction. 

The same effect as LID is also produced qualitatively by spontaneous light pressure, 
i.e. it produces flows of absorbing particles in the gas, and’leads to spatial redistribution 
of the density. We compare now the degrees of manifestation of L I D  and of spontaneous 
light pressure. Let us consider a gas in a cell with closed ends. In this case j = j m  + j,, = 0 
and therefore F = -( v, - v,,) j,. If R = kfi, we obtain the following rough estimate for 
the friction force density: 

Fi = - ma vi j ,  

where 6 is the mean thermal velocity and p, is the excited particle density. We compare 
this force with the spontaneous light pressure force, whose density FL is approximately 
equal to hky,p,,,. Here, y,,, is the decay constant of the excited state. For Y,,, - v,,, we 
obtain 

The principal factor that determines this relation is mafi/ hk-the ratio of the thermal 
momentum of the particle to the photon momentum. For the optical region of the 
spectrum and at room temperature mac/ hk - lo4. Thus, the force density F causing 
LID can exceed the force density of the spontaneous light pressure by three or four 
orders of magnitude. 

Unlike the light pressure and other effects LID is not connected with the direct 
force action exerted by the radiation on the individual particles. In this respect L I D  

occupies a special position. The energy of the directional motion of the particles, 
produced in the case of LID, is drawn from the thermal energy of the gas. This decreases, 
of course, the entropy of the gas mixture, but this decrease is offset by the entropy of 
the radiation produced when it is scattered in the gas. 

In the earliest publications (see Gel’mukhanov and Shalagin 1979, 1980a) and in 
almost all subsequent theoretical works on LID a model of absorptive particles with 
non-degenerate energy levels was used. The first step in the calculation of the multilevel 
structure of real objects has been made by Gel’mukhanov and Shalagin (1980b), 
Dykhne and Starostin (1980) and Mironenko and Shalagin (1981) who investigated 
L I D  at the vibrational-rotational transition of molecules. But the degeneracy of the 
energy levels of absorptive particles has not been taken into account in these works. 
This degeneracy has been considered by Gel’mukhanov (1982), and the kinetic equation 
for the density matrix of the two-level system has been solved in the linear radiation 
intensity approximation and in the limit of the homogeneously broadening absorption 
line. In this statement the drift velocity does not depend on the radiation polarisation, 
as has been shown. 
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Widely available experimental data were treated using non-degenerate levels in the 
LID phenomenon theory. On the other hand, the precision and reliability of available 
experimental results, especially for molecular objects, give rise to the indispensability 
of a modification of the theoretical description. A new formalism must describe the 
LID phenomenon taking into account the level degeneracy under arbitrary radiation 
intensity conditions with regard to collisional transitions between rotational levels and 
magnetic sublevels. 

This problem is not solvable in the general case. But for molecules the situation 
of having large rotational quantum numbers J ,  and J, is typical (J , ,  J ,  >> 1). In this 
limit a semiclassical description of rotational motion is effective. 

The main aim of the present paper is to investigate the influence of the level 
degeneracy and radiation polarisation in the translational non-equilibrium state which 
is induced by light (the LID phenomenon). 

The basic idea of our work is as follows. The main R dependence of the LID effect 
is described by a so-called Q function (see below). From the LID theory of particles 
with non-degenerate levels it is known that in the general case the cp function depends 
on the light intensity and on a dipole matrix element of transition n-m (Mironenko 
and Shalagin 1981). However, the degeneracy of the magnetic M sublevels takes place 
in the real atoms and molecules. The M distribution of particles influence the cp 
function due to the M dependence of the dipole matrix element of a transition. But 
the M distribution of particles depends on the light polarisation. Hence the Q function 
must also depend on the light polarisation. 

2. Kinetic equations in the semiclassical description of rotational motion 

The interaction of particles with a running monochromatic wave E exp( - i d  + ikr), 
which is resonant to the vibrational-rotational transition nJ,-mJA, is described by the 
following system of kinetic equations for the density matrix (see Rautian et a1 1979) 
(d ld t  = a / d t +  uV): 

(dldt)pm(Jo) = Sm(Jv)+i6,~6[Pmn(U)Vn, - V m , ~ n m ( ~ ) l  

(d ldt )pn(Ju)=Sn(JU)+i6 , , , [pnm(u)Vmn - V n m ~ m n ( u ) I  (2.1) 

[ ( d l d t ) + r - i ( R - k ~ ) l p m n ( ~ )  = S m n ( u ) + i [ p m ( J A u ) V m n -  Vmn~n(Jot01. 

Matrices p,(Ju) ( i  = m, n) ,  p,,(u) with the corresponding elements p i (JM/JM‘u) ,  
pmn(J~M’ lJoMu)  are presented here; M, M‘ enumerate the magnetic sublevels, V,, is 
the intersection matrix with the elements V,,(JAM’IJ,M) and r is the homogeneous 
linewidth of the absorption line. The collisional integral Si(Ju) for particles with 
degenerate levels was first investigated by Waldman (1957, 1958) and Snider (1960, 
1964). The collisional relaxation of the off-diagonal element of the density matrix is 
described by the collisional integral S,,( U )  whose structure has been investigated by 
Andreeva et al (1973). 

The solution of the system (2.1) under conditions of arbitrary radiation intensity 
and J is a very complicated problem. We shall consider this system in the semiclassical 
limit J >> 1, which allows us to simplify its solution considerably. This approach has 
been made by Ducloy (1975, 1976) and Nasyrov and Shalagin (1981). Following the 
latter work we transform equation (2.1) from the JM representation to the new one 
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with transformation of the density matrix elements and the interaction Hamiltonian 

vmn(s) =C exp(-ipcp)~,,(JbM+p/21J~M--/2).  
P 

Here s is a unit vector of the direction of semiclassical angular momentum; s is 
characterised by the polar (e)  and azimuthal (9) angles, and 

COS e = M /  J or COS e = M / J  J = i ( J , + J b ) .  
Transformation (2.2) is analogous to the Wigner transformation for translational 
degrees of freedom (see Landau and Lifshitz 1976, Rautian et al 1979). 

In the new representation when J >> 1 equations (2.1) have the following form: 

(d/dt)pm(sJu) = S m ( S J 0 )  + S J J ; P P ( S O )  

(d/ d t 1 P n  ( sJu) = Sn ( sJu 1 - S J J ~ P P  ( su) 

[(d/d t )  + 

~ ( ~ 0 1  = ( 2 / ~ )  Re[i(V*,n(s)pmn(sv)l. 

(2.3) 
- i(fi - k u ) l p m n  (su) = Smn (su) + i V m n  ( s ) [ p m  ( sJb~)  - P n  ( ~ J O U ) ~  

In these equations neither an exchange of angular momentum between a photon and 
a molecule nor a momentum exchange are taken into account. The differential terms 
presented in the paper of Nasyrov and Shalagin (1981) are responsible for the angular 
momentum exchange (these terms vanish when J >> 1). 

In this paper the collisional relaxation of the absorptive particles has been described 
within the limits of the model of relaxation constants. It seems to be natural to introduce 
the semiclassical representation of angular momentum in exact collisional integrals. 

We proceed from the collisional integrals in the JM representation which have 
been adduced in the book by Rautian et al (1979). Using some calculations and the 
optical theorem we obtain 

Si(sJu) =C I [A,(sJu~s’J’u’)pj(s’J‘u’) 
j J ’  J 

- A~~(s’J’u’/sJu)~~(sJ~)~ ds’ du’ (i, j = m, n) .  (2.4) 

A semiclassical limit form (2.4) for the collisional integral has been proposed by some 
authors. A review of these works can be found in the paper by KuSEer et al (1981), 
where the connection between classical and quantum mechanical Boltzmann equations 
is considered. The collisional integral kernels in (2.4) have the following connection 
with characteristics of a collisional elementary act: 

AU(sJuIs’J’uf)=2 C d S ~ d s ~ d u d u ‘ 6 [ u - u ’ - ( u - u ’ ) m / m , ]  
J S J L  I 
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where 

a , ( S J S b J b U l S ’ J ’ S b J L U ’ )  = (2r)-’JJb 1 eXp[i(p‘p’- pp + pbpL- pb(Pb)]  
w ”  P B P L  

XJJ(J,  M+p/2 ,  J b ,  h ? b + p b / 2 ,  U ( J ‘ ,  M ’ + p ‘ / Z ,  JL, ML+pL/2, U‘) 

Xf;,(J, M-p/2, J b ,  M b - p b / 2 ,  U l J ’ ,  M‘-/A’/2, Jb, Mb-/.L;/2, U ‘ )  

is the collisional cross section which is expressed in scattering amplitudes 
f;,(JMJbMbu/J’M’JLMLu’), m = mamb/(ma+ mb) is the reduced mass of colliding 
particles (ma and mb are masses of absorptive and buffer particles, respectively), U 

and U ’  are relative velocities of particles before and after a collision and the S functions 
in (2.5) represent the momentum and energy conservation laws. 

In the collisional integrals S,(sJu) and S,(sJu) in (2.4) a collisional exchange 
between rotational levels in m and n states and a collisional decay of the excited 
vibrational state m are taken into account. In the kernel of a collisional integral only 
the collisions of the absorptive particles with buffer particles are taken into account. 
This assumption is true if the buffer particle density pB is great in comparison with 
the density p of the absorptive particles. Below we assume that pB>>p. 

Analogous calculations for the collisional integral S,,(su) = - S i ! , ( s u )  + S(,zi(su) in 
the equation for the off-diagonal element p,,(su) lead to the extinction term 

S : ! I ( S U )  =- 2 d S b  duPb(SbJbO - u ) [ f m m ( s J b S b J b u )  - fnn (SJoSbJbU) IPmn(SU)  (2.6) 
2=h im J~ I 

where the scattering amplitudes in the 8p representation take place: 

f;](sJsbJbu) = c exp[-i(w+kb(Pb)l  
fi’cIB 

’ f ; ~ ( ~ ,  M+pI2, Jb, M b + p b / 2 ,  UlJ, M - p / 2 *  JB, M B - p B / 2 9  U ) .  

For S‘,z!,(su) we have 

S‘,‘!,(SU) = ds’ do’ A(su~s’u’)~,,(~’u‘). I (2.7) 
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We shall find the expressions for the LID velocity. Multiplying both parts of ( 2 . 3 )  
by m,u, integrating over U, s and summing over J we obtain a gas dynamical equation 
for flows of the absorption particles 

ji=c dsduupi(sJu). J l  
The integrals 

ma 1 ds du uS,(sJu) 
J I 

J i 

on the right-hand sides of these equations define the friction force density Fi which 
acts on the flow ji from the side of the buffer particles. For the total force density 
acting on the absorptive gas we can obtain 

F = Fm + F, = - m, 1 ds do  u [  vm( sJu)p,(sJu) + v,(sJu)p,(sJu)] (2.9) 

with the transport collisional frequencies 

v,(sJu) = V , , ( S J U ) +  v,,(sJu) v, (SJU) = v,, (do) 
c (2.10) 

v , ( s J u ) = C  du’ds’(1- UU’/U’)A,~(~’J’U’/SJU). 
J ’  J 

For the transport collisional frequencies vii( sJu) the processes of velocity change, J - J  
exchange and change of the angular momentum direction s for the particles in the 
vibrational state i are taken into account; v,,(sJu) is the transport frequency of the 
collisional decay of the state m. 

In this work we neglect some weak effects of the influence of light-induced multipole 
moments on the absorptive particle drift (see Gel’mukhanov and Il’ichov 1985) and 
so the total friction force density F is collinear to the flows j m  and j ,  and can be 
represented as 

F =  -ma(vmjm + v n j n )  v m  = v m m  + v n m  v, = U,,. (2.11) 

Introduced here are the coefficients vu defined by the following integral equations: 

vijjj = C J ds do vijupj(sJu) = 1 ds du vij(sJu)upj(sJu). 
I J J  (2.12) 

As is evident from these equations, the quantities U,] depend in the general case on a 
distribution function form and, consequently, on radiation characteristics (intensity, 
spectrum, polarisation). The degree of this dependence is determined by the depen- 
dence of collisional frequencies on s, J and U. 

Thus the quantities vlJ, as is clear from (2.12), are the transport frequencies vy(sJu)  
averaged in a definite manner. If the dependence of v,(sJu) on s, J and U can be 
neglected, v, and v,(sJu) are undistinguished. In particular a velocity dependence of 
collisional frequencies which corresponds to the total cross section has been analysed 
in some works on non-linear spectroscopy (see for example Rautian et a1 1979). As 
has been shown, collisional frequency depends weakly on velocity in some cases. It 
is to be noted that the dependence of collisional frequencies on velocity is neglected 
in the majority of papers on non-linear spectroscopy. 
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Let us define a drift velocity U of the absorptive particles. Under spatially 
homogeneous conditions the total friction force F is absent. So from (2.11) we have 

(2.13) 

The flow of excited particles can be determined from (2.3) by multiplying it by U, 

integrating it over o and s and summing over J :  

( vmm + c n m  ) j m  = ( k /  k )  WPV (a) (2.14) 

p =  p ( s o )  d s d o  (2.15) 5 
where p is the absorptive probability for a unit time, q(R) is a function which gives 
the dependence of L I D  on the frequency detuning R (Gel’mukhanov and Shalagin 
1980b, Mironenko and Shalagin 1981) and the quantity en,,, is the collisional decay 
frequency for the m state, which is defined by the following equation: 

cnmjm=? J dsdufi , ,up,(sJo)=~ dsdofi,,(sJo)op,(sJo) (2.16) J J  
where 

c,,(sJu) =c ds’do’ A,,(s’J‘o’lsJo). 
J ’  5 

The expression for L I D  velocity follows directly from (2.13) and (2.14): 

(2.17) 

From the experimental viewpoint the LID phenomenon can be conveniently detected 
from the measurement of the change of one-component concentration or partial 
pressure over the length of an absorptive cell. 

It can be shown that the partial pressure overfall Spa over the cell length is 

(2.18) 

where SS is the absorbed radiation power density. 
The expression (2.18) is convenient for the treatment of LID experimental results, 

because it relates the change of the partial pressure (or concentration) of the absorptive 
particles to an experimentally easily measurable quantity SS-the change of radiation 
intensity due to its absorption in the cell. The function q(a) and the relative difference 
of the collisional frequencies constitute the specific character of the L I D  phenomenon. 
Here, as has been mentioned above, the main specific dependence on the frequency 
detuning is given by q(R). An additional and generally weak dependence on R can 
be contained in the factor ( v, - v,,,)/( v,, + v,,) due to the velocity dependence of 
collisional frequencies. 

When the radiative intensity is weak an explicit expression for q ( 6 2 )  can be obtained. 
Let us make an ordinary assumption about the absence of phase memory in collisions. 
It means neglecting the collisional integral S,, in (2.3) for the off-diagonal element 
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pmn and simultaneous renormalisation of the constant r (now r is a homogeneous 
linewidth). In the case of a running monochromatic wave 

(2.19) 

where W(o) is the Maxwellian velocity distribution and W,(J) is the Boltzmann 
distribution for rotational levels. In accordance with the definition (2.15) we obtain 
the following expression for cp(R): 

R+iT  z=- Re[ zw ( z>I 
= Re[ w( z ) ]  kB 

(2.20) 

In the case of a higher radiation intensity the expression for cp(R) becomes 
dependent on a concrete collisional mechanism and on the degeneracy of energy levels. 

The collisional mechanism has been analysed in some aspects in early theoretical 
works on LID for the model of non-degenerate levels. Our theory permits us, in addition, 
to consider the degree of the influence of this degeneracy on (p(R). To make the 
analysis easier and to discover the degeneracy effects in ‘pure’ form we shall simplify 
as much as possible the collisional part of the problem, i.e. we shall exploit the model 
of strong collisions. 

3. The model of strong collisions 

In the model of strong collisions the equations for pm( d o )  and p n  ( d o )  under stationary 
spatially homogeneous conditions have the following form: 

where 

= v m R +  vmV = vnR 

r r 

In these equations collisional processes of the following four types are taken into 
account: with a strong velocity change but without a change of rotational and oscilla- 
tional state (frequencies vi=), the collisions establishing the equilibrium distribution 
W( U) wB(J) /4r  according to rotational and translational degrees of freedom (frequen- 
cies viR), the collisions which initiate the downward transition m + n and establish a 
simultaneous equilibrium distribution over s, J and U (frequency U,”) and, finally, 
the decay of the m state without a change of U, J and s (frequency ’y,,,). In (3.1) the 
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field term p p ( s u )  is used, which gives the number of light-induced transitions ( nJosu) + 

( m l b s u )  for unit time. In the absence of a phase memory we have 

(3.2) 

(3.3)  

where 

T 1 m  + 7 2 m  + 7 3 m  = T l n  - T i n  + T2n - 7 ; n +  7 3 n  = ( Y m  + VmV)-'* 

From (3 .2)  and (3.3) we obtain the following expression for the field term, which 
gives the velocity non-equilibrium terms in p,(sJu): 

The following notation is introduced here: 

I G( s)I2 Y(Rsu)( 2rT)-' 
1 + ~ T ~ ~ G ( S ) ~ ~ Y ( R ~ ) T - ~  

X(Rsu) = 

r2 w( U )  
Y(Rsu) = P ( 1  + 2 ~ , 1 G ( s ) l ~ T - ' ) + ( R - k ~ ) ~  

Y(Rs) = Y(Rsu) du I X(R) = X(Rsu) ds du J 

(3.4) 

(3.5) 

(3.6) 

which coincides with (2.17). The frequencies of strong collisions play the role of 
transport frequencies. Taking into account the structure of the field term, the function 
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cp(a) can be given by the following expression: 

( 3 . 7 )  

Let us assume the molecule lifetime in vibrational-rotational levels mJb and nJo 
with velocity equilibrium small, so that 

7;' >> max T-'IG(s)12 Y(Rs). 

In this case the expression for (~(0)  can be simplified considerably and it takes the form 

J k u \ G ( s ) 1 2 Y ( f l s u )  ds du 
kij IG(s)12Y(Rsu)  ds du '  cp(a) = ( 3 . 8 )  

The general form for G (  s )  under electric dipole interaction is (Nasyrov and Shalagin 
1981) 

G ( s )  = G"DyL*(cpeO) A =  Jb-  Jo. 
U 

Here G" = E ' d , , / 2 h ( 2 f ) ' / 2 ,  E" are circular contravariant components of the electric 
field ( U =  - 1 , O ,  l ) ,  d,, is the matrix element of the reduced dipole moment and 
DcL(aPy) are the Wigner functions. When Jo = Jb (Q branch) G ( s )  = Gs. 

We shall calculate ~ ( f l )  for linear and circular polarisations. The result of s 
integration in (3 .8)  is expressed through elementary functions 

The indices 0 and 1 correspond to linear and circular polarisations, respectively. In 
the case of a linear polarisation we have 

fo( x) = 1 - 5 tan-'( l-') 5 = C ( X )  = ( x-'{ 1 + [ ( x k f i -  f ~ ) / r ] ~ } ) " ~  (3 .10)  

and for a circular polarisation 

f l (x)  = 1 In (3.11) 

The saturation parameter x = 2 ~ ~ 1 G / ~ / r  is introduced here. 
In the model of non-degenerate levels and strong collisions the function of detuning 

(we shall designate it $(a)) is given by ( 3 . 9 )  where fo,l(x) are replaced by f (x)  = 
[ x ( l + 1 2 ) ] - ' .  By integrating ( 3 . 9 )  with f (x )  over x we obtain (2 .20)  with z =  
[fl+iI'(1+x)1'2]/kij. 

In the present paper the functions cp,(R), cpl(n) and $ ( C l )  are calculated for different 
ratios kB/T and r B /  kij, where r B /  k is a half-width of the Bennet structure in a velocity 
distribution of molecules. IIB/kij is determined by a half-width of fo(x), f l(x) and 
f(x) .  The corresponding graphs are represented in figure 1 .  In the case of R and P 
branches (transitions Jo+ Jo* 1) the expressions for cpo(n) and cpl(n) coincide with 
cp,(n) and cpo(R) for the Q branch (transition .lo+ J,,) respectively. 
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1 

VI 
E 0 .- + 
U 0  
3 c 

4 

-1 

- 4  -2  0 2 4 
Oetuning ( Q l k F I  

1 

Figure 1. Functions 6, ‘p, and ‘po. ( a )  kb/T= 100, T e / T = 3  (1: 4, 2: v I ,  3: 
kb/T = 30, Ts/T = 10 (4: 6, 5 :  ‘p,, 6:  cpo) ( c )  kb/T = 10, TB/T = 10 (7: 6, 8: ‘pI , 9: (PO) .  

( b )  

4. Discussion 

Hitherto the function $(a), which corresponds to the model of non-degenerate levels, 
has being used for the analysis of experimental material for the LID of molecules. The 
question concerning the correctness of this use is natural. 

To answer this question we compare cp,(R) and cpl(0) with cp(0). It seems to be 
natural to compare these functions for the same ratio T / k B  of homogeneous and 
Doppler width and for an equal width of the Bennet structure rB/ k which is created 
by radiation in the velocity distribution of molecules. This width can be measured in 
an independent experiment. 

kB and 
TB/kB. We recall that r B / k B  is equal to the half-width of f o ( x ) ,  f , ( x )  and f ( x ) ,  as it 
has teen defined. The saturation parameter x from the expressions for f o ( x ) ,  f , ( x )  
and f (x )  has been determined numerically for each function, so that the given half-width 
TB/kv can be realised. The difference between cpo(0) and ~ ~ ( 0 )  for the given ratios 
T / k B  and TB/kv is conditioned by the dependence of the non-equilibrium part of the 
velocity distribution on the radiation polarisation. 

The graphs in figure 1 have been constructed for three pairs of the ratios 
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When r,/ kB - 1 ,  calculation of level degeneracy and radiation polarisation does 
not greatly change cpo(sl) and cpl(a) in comparison with $(a). When r / k B -  1 the 
difference of cpo(0), cp,(CL) and @(a), as is evident from figure 1, can attain 10-20%, 
and this is realised for a sufficiently high radiation intensity ( x  >> 1) .  

For weak intensity ( x  << l ) ,  when 

all three functions cp0(a), cpl(a) and $(Cl) coincide and are described by (2.20). 
When [RI >> kv, r B  the behaviour of cp0(a), cpl(a) and @(a) is also universal and 

does not depend on the radiation intensity and ratio r/ kB. Under these conditions 
the wings of f o ( x ) ,  f l ( x )  and f ( x )  in the area important for integration (near 1x1 =z 1 )  
have the same behaviour -l-’. Using the asymptote for w(z) for IzI >> 1 

w ( z )  = i.rr-”’[z - (1/2z)]-’  

and we have cpo(R) = cp,(a) = G(a) = kB/CL. 
A promising use of the LID phenomenon for measurements of the collisional 

frequency v, or diffusion coefficient D, = v2/2v, of the excited molecules has been 
pointed out in the first papers on LID. 

A diffusional coefficient for CH3F in the excited vibrational state has been measured 
in this way (Panfilov et a1 1983). It follows from the formula for the drift velocity or 
pressure change that the accuracy of (v,, - v,)/ v, measurements depends on the known 
precision of c p ( f l ) .  The present paper shows that the difference between functions 
cpo(R), cp,(R) and @(a), which corresponds to the model of non-degenerate levels is 
about 10-20%. Changing intensity and buffer gas pressure in the experiment we can 
work in the area of parameters Cl/  ki7, r/ kv, r B /  ki7 where this difference is less than 1 o/o. 

Thus the use of the simple model of non-degenerate levels for an analysis of LID 

experimental results has proved to be correct in most cases. On the other hand a 
deviation from the model of strong collisions and the role of radiation polarisation 
can be detected in experiments with sufficiently high accuracy of measurement. For 
this aim, as it follows from the present paper, one has to choose the conditions 

IaI-rB- ki7 x 3 1 .  
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